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Abstract 

Repeated measurements at several time points can be described by a growth 
curve model. However, there might exist a few individual curves that are 
located far away from the mean trend or have large variances. These individual 
curves can be candidates for outliers and robust estimators of the regression 
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coefficients are desired. In this paper, an estimation method is proposed that 
uses weighted least square estimators, where the weights are optimized from 
squared residuals following the gamma distribution. 

1. Introduction 

Let ( )tyi  be the growth amount of the i-th individual at time 

( ),,,1 nit K=  where n is the sample size. Let ( ( ) ( ))′= piii tyty ,,1 Ky  

be a p-dimensional response variables vector, ( )′= ikii aa ,,1 Ka  be a    
k-dimensional between-individuals design vector, ( ( ) ( ))pttX xx ,,1 K=  

be a pq ×  within-individuals design matrix, and ( ( ) ( ))′εε= piii tt ,,1 Kε  

be a p-dimensional error vector distributed according to ( )., ∑ppN 0  

Then, the GMANOVA model proposed by Potthoff and Roy [6] can be 

expressed as ( ) ( ) ( ),ttty iii ε+Θ′= xa  where ( )′=Θ kθθ ,,1 K  is a qk ×  
unknown regression coefficient matrix. We assume that all individuals 
are observed at the same time points and the numbers of repetitions are 
also the same. More general time point designs have been studied by 
Vonesh and Carter [11], and others.  

The mean is described in terms of interactions between between-
individual covariates and within-individual covariates. Note that ( ) =tβ  

( ( ) ( )) ( )ttt k xΘ=′ββ ,,1 K  can be considered as time-varying coefficients 
as proposed by Hastie and Tibshirani [2], i.e., [ ( )] ( ) =Θ′= ttyE ii xa  

( ) ,1 ijj
k
j atβ∑ =

 and Satoh and Yanagihara [10] derived the confidence 

interval as a function of time under the growth curve model. 

In matrix notation, the GMANOVA model is given by 

( ),,O~, npn INXAY ⊗∑+Θ= ×EE  

where ( ) ( ) ,,,,,, 11
′=′= nn AY aayy KK  and ( ) .,,1

′= nεε KE  For 
example, if we fit a polynomial curve of degree 1−q  to the trend over 

time, the design vector is taken to be ( ) ( ) .,,,1 1 ′= −qttt Kx  Selecting the 
degree of the polynomial curve or the number of base functions is known 
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as a variable selection problem and some variable selection criterion have 
been proposed, c. f., Satoh et al. [8]. To describe a complex non-linear time 
trend we can also use B-spline base functions for ( )tx  and the 
relationship with polynomial curves has been discussed by Satoh et al. 
[9]. 

In this paper, we consider a robust estimation of the regression 
coefficients. Rousseeuw et al. [7] and Ben et al. [1] proposed robust 
estimation methods for multivariate linear regression by using the 
Mahalanobis distance of response and covariates at the same time. 
Although the growth curve model can be considered as a family of 
multivariate linear models, those methods can not be applied directly 
because they have two types of covariates; (1) ordinary covariates ia  and 
(2) time-dependent covariates ( ),tx  for which the design is common to all 
individuals. Therefore, we need to detect outliers as curves over the 
observation time period under the growth curve model. In the next 
section, weighted least squares estimators are derived for fixed weights. 
We then discuss ways of revising the weights and deciding the cutoff 
point based on the residual distribution in Section 3. An example is 
illustrated in Section 4, and we summarize our conclusions in Section 5. 

2. Weighted Least Squares Estimator 

To develop robust estimators of the unknown regression parameters, 
we consider minimizing the following sum of weighted squares of 
individual residuals, 

( ) ( ) ( ) ,,, 122

1

′Θ′−′∑Θ′−′=∑Θ= −

=
∑ XXeewl iiiiiii

n

i
ayay  

where ( ) ∑=yVar  and iw  denotes the positive weight of the i-th 

individual. Assuming that the covariance matrix ∑  is known, a weighted 
least squares estimator is obtained by 

( ) ( ) ( ) ,ˆ,,ˆˆ 1111
1

−−−− ′∑′∑′′=′=Θ XXXWYAWAAkθθ K  
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where ( ).,,diag 1 nwwW K=  It is an unbiased estimator of Θ  for fixed 

weights, i.e., [ ] Θ=Θ̂E  because [ ] .XAYE Θ=  Let ( ) ( ,,ˆˆvecˆ 1 Kθθ ′=Θ′=  

) ;ˆ ′′kθ  then the covariance matrix of the estimator is given by 

( ) ( ) ( ) ( ) 11121ˆVar −−−− ′∑⊗′′′= XXWAAAWAWAAθ  

 ,
,1,

,11,1










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





ΩΩ

ΩΩ
=

kkk

k

L

MM

L

 

where ( ) jjjj ′′ Ω= ,ˆ,ˆCov θθ  and ( ) .ˆVar , jjj Ω=θ  

In an actual application, the covariance matrix of observations needs 
to be estimated and we use the weighted estimator defined by 

( ) ( ) .withtr
ˆ 1 WAWAAWAWHH

HYY ′′−=
′

=∑ −  

Note that ∑̂  is an unbiased estimator of ∑  for fixed weights as well as 

,Θ̂  i.e., [ ] ∑=∑̂E  because EHHY =  and ( ).,O~2/1
nppn IIN ⊗∑ ×

−E  

3. Revision of Weights 

From the previous discussion, we consider fixed weights and obtained 
two estimators, (1) the covariance matrix ∑̂  and (2) the regression 

coefficients .Θ̂  Hence, individual residuals can be obtained as =2ˆie  

( ).ˆ,ˆ2 ∑Θie  Here, we discuss revising individual weights, according to the 
residuals. 

Firstly, we attempt to describe the distribution of residuals. If there 
are no outliers, the residuals niei ,,1,2 K=  have a chi-square 
distribution with p degrees of freedom. On the other hand, the 
distribution including outliers is expected to have a heavy upper tail, and 
therefore, the actual value for the degrees of freedom might be greater 
than the theoretical value p. 
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From the result of Wilson and Hilferty [12], the median value m of 
the chi-square distribution with f degrees of freedom can be approximated 
as 

.27
4

3
2

ffm +−≈  

Conversely, it is possible to approximate the number of degrees of 

freedom as a function of m by solving ( ) 0274322 =++− fmf  with 
respect to f: 

( ) .27
4

3
2

3
2

2
1 22




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
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



−




 +++= mmmf  

Note that the other solution of the quadratic equation, { −+ 32m  

( ) } 227432 22 −+m  is inappropriate because ( ) ,2 azzzg −−=  
0>a  is a monotonically decreasing function for .0>z  Thus, the 

number of degrees of freedom for the residual distribution including 
outliers can be estimated by using its median residual, which can be 

expressed as ( ),ˆˆ mff =  where m̂  is the median value of  { }.ˆ,,ˆ 22
1 nee K  

The estimated value for the number of degrees of freedom from the 
median of the residuals can be regarded as a sort of robust estimator for 

the chi-square distribution, but f̂  is not always a natural number. 
Therefore, we consider the gamma distribution with shape parameter 

2f̂  and scale parameter ( ).2,2ˆ,2 fG  The gamma distribution can be 
interpreted as a wider distribution class, which includes the chi-square 
distribution and the number of its degrees of freedom can take positive 
real values. Thus, the residual distribution is described by using the 

gamma distribution with robust estimated degrees of freedom .f̂   

Letting αc  be the upper 100×α  percentage point of ( )2,2f̂G  we 

take αc  as the cutoff point of weights, i.e., ,0=iw  if α> cei
2ˆ  for 

.,,1 ni K=  In other words, we do not use observation iy  in estimating 
the regression coefficient, if the corresponding residual is larger than the 
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cutoff point. To give smooth and continuous weights for the other 
residuals smaller than the cutoff value, the following Tukey’s biweight 
function, c.f. Maronna et al. [5] can be applied and new weights are 
defined by 

( ) ( ) ( ) ( )
( )





≥
<−== α .1,0

,1,1withˆ
22

2
z
zzzwceww ii  

Selecting candidates for outliers or the number of outliers depends on the 
cutoff value. If there is no prior information, α  might be given by 0.01, 
0.02 or 0.05. 

Finally, our robust estimation method can be summarized in the 
following steps. 

Step 0. Set α  for the cutoff value and let all weights be 1. 

Step 1. Calculate ∑̂  and the weighted least squares estimate Θ̂  for 
the given weights. 

Step 2. Obtain the residuals and their median value, then calculate 

the number of robust degrees of freedom .f̂  

Step 3. Approximate the residual distribution by ( )2,2f̂G  and find 

the cutoff value .αc  

Step 4. Renew the weights and go to Step 1 until the estimated 
regression coefficients or weights converge. 

4. Example 

We now apply our estimation method to Table 1 considered by 
Potthoff and Roy [6], consisting of measurements of the distance (mm) 
from the center of the pituitary to the pteryomaxillary fissure for 11 girls 
and 16 boys with 4 different ages (8, 10, 12, 14 years old). 
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Table 1. Growth curve data for orthodontic measurements. Optimized 
weights w were obtained by a robust estimation method and F10, M09, 
and M13 were regarded as outliers because those weights were close to 
zero. 

Female Male 

ID 8 10 12 14 w ID 8 10 12 14 w 

F01 21 20 21.5 23 0.92 M01 26 25 29 31 0.68 

F02 21 21.5 24 25.5 0.92 M02 21.5 22.5 23 26.5 0.81 

F03 20.5 24 24.5 26 0.78 M03 23 22.5 24 27.5 0.61 

F04 23.5 24.5 25 26.5 0.92 M04 25.5 27.5 26.5 27 0.53 

F05 21.5 23 22.5 23.5 0.98 M05 20 23.5 22.5 26 0.65 

F06 20 21 21 22.5 0.98 M06 24.5 25.5 27 28.5 1.00 

F07 21.5 22.5 23 25 0.99 M07 22 22 24.5 26.5 0.90 

F08 23 23 23.5 24 0.95 M08 24 21.5 24.5 25.5 0.47 

F09 20 21 22 21.5 0.79 M09 23 20.5 31 26 0.00 

F10 16.5 19 19 19.5 0.08 M10 27.5 28 31 31.5 0.83 

F11 24.5 25 28 28 0.85 M11 23 23 23.5 25 0.90 

      M12 21.5 23.5 24 28 0.71 

      M13 17 24.5 26 29.5 0.00 

      M14 22.5 25.5 25.5 26 0.93 

      M15 23 24.5 26 30 0.62 

      M16 22 21.5 23.5 25 0.88 

Here, we fit model (1) to the data by letting ( )′= 0,1ia  for girls and 

( )′1,1  for boys, and ( ) ( )′= tt ,1x  for { }.24,12,10,8∈t  The first covariate 
expresses the distance for girls and the second covariate expresses the sex 
effect, which is determined by the additional distance for boys. 

In order to decide the cutoff point, we tentatively set .01.0=α  After 
the iterative calculation described as Step 0 to Step 4 in Section 3, the 
regression coefficients or renewed weights converge, which is shown in 
Figure 1. Estimators of the covariance matrix of observation and 
regression coefficients are finally obtained as, respectively, 
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,
178.0560.0
468.0974.17ˆ,

349.4175.4831.2729.2
175.4180.5551.3659.3
831.2551.3573.3549.2
729.2659.3549.2343.3

ˆ 





=Θ



















=∑  

 

Figure 1. Convergence of the estimated regression coefficients, (1, 1) 
element of .Θ̂  The proposed estimation method required iterative 
calculation on the weighted least squares estimator and the revision of 
weights based on the residuals, one after the other. The estimated 
constant seems to converge after about twenty repetitions. 
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The median of the residuals and the robust number for the degrees of 
freedom are given by 696.4ˆ =m  and ,334.5ˆ =f  respectively. Note that 

f̂  is larger than ,4=p  which is an ordinal value for the number of 
degrees of freedom for the case when there are no outliers. We, then, 
approximate the residual distribution by the gamma distribution and 
obtain the upper 100×α  percentage point, .671.15=αc  Figure 2 shows 
the fitted gamma distribution and smoothed experimental density 
function, which is expected to be close to the original residual 
distribution. Note that the range of the horizontal axis is restricted to 
[ ],20,0  and there are two residuals 55.8 and 123.7 outside this range. 

 

Figure 2. Approximation of the residual distribution. The residual 
distribution is expressed by a kernel smoothing density function and 
theoretically it should be distributed as a chi-square distribution with 

4=p  degrees of freedom. The gamma distribution estimated by the 

robust degrees of freedom f̂  is closer to the smoothed empirical 
distribution than the chi-square distribution. 
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The limit values of the weights are listed in Table 1. The result 
weights of F10, M09, and M13 are almost zero; this implies that these 
observations are not used for estimation of regression coefficients. Robust 
estimated growth curves are illustrated with candidates for outliers in 
Figure 3. 

 

Figure 3. The growth curve model derived from the proposed robust 
estimation method. Solid lines show the fitted curves and the dotted lines 
considered by Potthoff and Roy [6] are superimposed. Three candidates 
for outliers are shown by dashed lines for which the weights are almost 
zero. 
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5. Discussion 

We regard an individual observation vector iy  for the i-th subject as 

one unit for detecting outliers. It might be possible for us to consider finer 
weights ijw  for ( ) .,,1, pjty ji K=  However, we need to take into 

account the covariance structure between observed time points; therefore, 

we summarize the residual for the i-th subject as 2
ie  and consider its 

weight .iw  

Although, we estimated the unknown parameter f of ( )2,2fG  by 
using the relation between the degrees of freedom and its median of the 
chi-squared distribution, there is another way using the maximum 
likelihood method for which the estimator was 5.840. The maximum 
likelihood estimator might be sensitive to outliers and become a larger 
value than that of our proposed estimator. 

Deciding the cutoff point for weights is an important problem for 
constructing robust estimators, and it is sometimes discussed in term of 
asymptotic efficiency against the maximum likelihood estimator. For 
example, Huber [3, 4] derived the asymptotic covariance matrix of 
proposed robust estimators for the multiple linear regression model, and 
this makes it possible to discuss the optimal cutoff point, which attains a 
given efficiency, e.g., 85%. We derived an asymptotic covariance matrix 
for our estimator only for fixed weights ,,,1, niwi K=  and it is a future 
problem to examine the assumption that weights are estimators or 
random variables. 
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